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Abstract. In this work, the two-dimensional, transient flow that occurs during the deposition of a Newtonian
liquid onto a substrate with a slot die is examined. The effect of an imposed persistent periodic (sinusoidal)
perturbation of the liquid flow rate in the coated layer thickness variation is explored at different downstream lip
length and coating gap (uniform, overbite and underbite) configurations. Small amplitude disturbances (∼ 10%

and ∼ 1%) of the steady-state value are considered. The numerical solutions are obtained solving the governing
Navier-Stokes equations, together with elliptic mesh generation technique of (Christodoulou and Scriven, 1992)
and (de Santos, 1991) with appropriate boundary and initial conditions, by the Galerkin / finite element method.
The temporal discretization is done by a predictor-corrector algorithm. The predictor step consists of a forward
Euler method and the corrector step consist of a first-order fully-implicit Euler method. The resulting set of non-
linear algebraic equations for the finite element basis functions’ coefficients at each time step is solved by Newton’s
method. The results show how the process configuration may be optimize in order to minimize the effect of flow
rate variation in the coated thickness.
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1. Introduction

Flows with free surfaces and free boundaries arise in many industrial and biological applications. Examples
are coating, polymer processing, ink-jet printing, spraying, deformation of blood cells, blood flow in arteries
and capillaries, and flow in the deep pulmonary alveoli.

Many of these flows are time dependent, their dynamics are controlled by the viscosity, elasticity and
capillarity of liquid. Modeling such flows requires computational methods which can describe and predict the
flow field behaviour, while simultaneously capturing accurately the shape of free surfaces.

An enormous range of manufactured products involves layers deposited as a liquid and then solidified on a
solid surface. Frequently, the coating stage of a manufacturing process is significant in cost, time involved and
the level of technology required for the production. To be competitive in the marketplace, all aspect of the
manufacturing must be efficient and maintain an acceptable level of quality control. Coating a substrate with
a liquid is a question of practical interest together with a classical field of interfacial hydrodynamics. Products
requiring precise control of coating thickness and avoidance of defects usually are coated with a pre-metering
coating technique: the thickness of the coated liquid layer is set by the flow rate fed to the coating die and the
speed of the moving substrate, and is independent of other process variables. Slot coating belongs to this class
of coating methods. Thus pre-metered methods are ideal for high precision coating. However, the nature of
the flow in the coating bead and the uniformity of the liquid layer it delivers can be affected by the substrate
speed, liquid properties, configuration of the die lips and cross-web uniformity of the contact lines position.

Slot coating is commonly used in the manufacturing of adhesive and magnetic tapes, specialty papers,
imaging films, and many other products. In this process, the coating liquid is pumped to a coating die in which
an elongated chamber distributes it across the width of a narrow slot through which the flow rate per unit
width at the slot exit is made uniform. Exiting the slot, the liquid fills (wholly or partially) the precise narrow
channel (coating gap H0 in the figure) between the adjacent die lips and the substrate translating rapidly past
them. The liquid in the gap, bounded upstream and downstream by gas-liquid interfaces, or menisci, forms the
coating bead.
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Figure 1: Side profile of the single layer slot coating. It includes many of the features that contribute to the
technological complexity of the process.

Figure (1) shows a typical configuration of a die applicator and substrate. (Beguin, 1954) discovered that
when layers thinner than about one-half the slot gap are to be coated (or in order to sustain the coating bead
at higher substrate speeds), the forces on the coating bead go out of balance and that way to re-balance them
is to apply a lower-than-ambient pressure in the upstream meniscus or “vacuum” (Pvac in the figure)), creating
a Poiseuille flow that opposes the Couette flow driven by the web. This method has proven ineffective as a
means of stabilization when the liquids are very viscous, i.e., thousands of centipoise. If not, instabilities which
manifest themselves in a down-web (ribbing) or cross-web (rivulets) variations.

Physical dynamics is required to understand coating flows. The forces important in slot coating are viscous
force, capillary force, pressure differences (or pressure gradients) forces, and in some cases inertial and elastic
forces. Coating beads themselves are only possible when that forces are balanced.

In a problem with free surface, the physical domain is unknown a priori. Mesh equations must be added to the
conservation equations to locate the free boundaries and map the unknown physical domain into a convenient
reference one. Elliptic mesh generation method to solve 2-D free surface problem and domain deformation
method to solve both 2-D and 3-D free surface problem for both structured and unstructured mesh. By these
two methods, the unknown domain is solved simultaneously with the other variables.

In this work, the effect of the flow rate oscillation in the film thickness variation on slot coating process is
currently being studied. In early works the effect of gravitational force was found to be usually of secondary
importance and therefore not considered here. The mathematical modeling of the transient slot coating flow
involves solving a initial boundary value problem in which the location of the free surface is a part of the
solution of the problem. The unknown flow domain (physical) is mapped into a fixed domain (computational).
The system of equations, with appropriate boundary conditions, for a two-dimensional viscous liquid flow is
solved in coupled form by the Galerkin / finite element methods, where the temporal discretization is done by
a predictor-corrector algorithm. The set of non-linear algebraic equations for the finite element basis functions
is solved by Newton’s method.

This paper is organized as follow: First, the physical problem and mathematical formulation is presented.
Second, a solution method is described which includes details of the free surface formulation, space and time
discretization, and linearization. Finally the results and comments are presented.

2. Mathematical Formulation

The two-dimensional transient free surface flow depicted in Fig. (1) is defined by the governing Navier-Stokes
and the continuity equations for a constant-property Newtonian liquid

ρ

(
∂v
∂t

+ v · ∇v
)
−∇ ·T = 0, (1)

∇ · v = 0, (2)

where v is the liquid velocity, ρ is the liquid density, ∇ is the standard gradient operator, and t is the time.
T = −pI + µ[∇v + (∇v)T] is the total stress tensor, the superscript T denotes transpose, p is the pressure, and
µ is the Newtonian liquid viscosity. Body forces (i.e. gravity effects) are neglected.

The geometries where the governing equations are solved is sketched in Fig. (2). Four slot coating configu-
rations with different downstream lip length and upstream coating gap are explored.

Appropriate boundary and initial conditions are necessary to uniquely solve this system of equations.

2



Proceedings of the ENCIT 2006, ABCM, Curitiba – PR, Brazil – Paper CIT06-0262

Hu =H

Hf =H Ld =6HLu=6H

Hd =H

H

2H6H

H

0.6H

H 6H
6H

H

1.4H

H 6H
6H

H

(a) Uniform

(b) Short lip

(c) Underbite

(d) Overbite

H

Figure 2: The four geometries used in this work in units of domain dimensions of the fixed downstream slot gap
Hd = 100 µm. The upstream lip length Lu and feed slot Hf were also kept constant.

2.1. Boundary and initial conditions

The boundaries of the flow domain are labeled in Fig. (3), and the correspondent boundary conditions are:
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Figure 3: Labels for the boundary conditions in a slot coating process. The location of the two-dimensional
cartesian coordinates is also shown.

(1)− At the two inflow planes, that is, at the die feeding slot, fully developed parallel rectilinear flow is
assumed, where a Couette-Poiseuille velocity profile is prescribed in function of the base flow rate q0.

u = 0, v = −6q0

Hf

[(
x

Hf

)
−

(
x

Hf

)2
]

, (3)

Hf if the feed slot considerer to be as Hf = Hd = 100 µm.
(2)− The no-slip and no-penetration conditions applies at the die walls.

u = 0, v = 0. (4)

(3)− At the free surfaces, the traction in the liquid balances the capillary pressure and there is no mass flow
rate across the gas-liquid interface. The dynamic condition on the free surface are based on the continuity of
the tangential stress (no traction) and discontinuity of normal stress caused by the surface tension. Implicitly
is assumed that the flow activity outside the free surface is negligible with the atmospheric pressure taken as
zero

nfs ·T =
1

Ca

dtfs

ds
− nfs p0, (5)

nfs ·
(
v − dx

dt

)
= 0, (6)

where Ca ≡ µVw/σ is the capillary number, dtfs/ds represents the curvature of the meniscus, tfs and nfs

are the local unit tangent and unit normal to the free surface, and p0 is the pressure on the gas side. At the
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downstream free surface, the gas pressure is usually atmospheric, that is p0 = Patm, and at the upstream free
surface vacuum is applied in order to stabilize the coating bead, that is p0 = Pvac. The evolution of the free
surface is dictated by the kinematic condition Eq. (6).

(4)− In the moving substrate, the no-slip and no-penetration conditions are applied

u = Vw, v = 0, (7)

Vw is the substrate velocity.
(5)− At the outflow plane, fully developed flow is considered

n · ∇v = 0, (8)

n · ∇ is here the directional derivative parallel to the substrate.
(6)− The downstream static contact line, xd, is pinned to the sharp edge of the die

xd = (xd, yd). (9)

(7)− The upstream static contact line is free to slide along the upstream die face Hu with a specified
upstream static contact angle θu = 1000. The mathematical conditions are

yu = Hu, nw · nfs = cos(θu), (10)

nw is the unit vector normal to the wall.
(8)− At the web surface the liquid translates with the web except near the locations where the liquid first

appears to contact the web. This sub-microscopic region is called the dynamic contact line, where evidences
points a very thin film of air being entrained when the coating speed is high and to that air film breaking down
and dissolving within around 100 µm of the dynamic contact line. In this short region the Navier slip condition
was used instead of the no-slip condition and a dynamic contact angle θdyn = 110o was specified.

1
β
tw · (v − Vwi) = tw · (nw ·T1), nw · nfs = cos(θdyn), (11)

where β is the slip coefficient, tw is the unit vector tangent to the wall. Without the slip condition there is a
non-integrable singularity in shear stress. For a better description of the flow in this region, a contact angle as
a function of a capillary number would be more appropriate or, as is mentioned in the work of (Weinstein and
Ruschak, 2004), a new model could be used where the interfaces are considered to be thin fluid phases with
equations of state relating in the simplest case, surface pressure to surface mass density.

Finally, an initial condition is needed. In this work, the fluid is assumed to be at rest initially, so the following
condition holds

v(x, y, t = 0) = 0. (12)

The imposed perturbation liquid flow rate q is a linear combination of the base liquid flow rate q0 and the
disturbance sinusoidal in time mode ∆q = Asin(f t)

q = q0 + Asin(f t), (13)

where A is the amplitude and f is the frequency of the imposed disturbance, and t is the time respectively. The
ongoing disturbance in the liquid flow rate leads to an transient response.

2.2. Dimensionless parameters

The dimensionless parameters that governs the problem are: (i) Capillary number Ca ≡ µVw/σ, which
measures the ratio of viscous stress to pressure generated by surface tension in curved meniscus. Increasing the
capillary number (which correspond to increase the production speed or the coating viscosity) usually shrinks
the ranges of speed — that yield acceptably smooths films, µ is the viscosity of the liquid, Vw is the velocity of
the flat wall or substrate, and σ the liquid surface tension. (ii) Reynolds number Re ≡ ρVw/µ, ρ is the density
of the liquid. (iii) Dimensionless vacuum pressure V ac ≡ PvacHu/σ. (iv) Gap-to-thickness ratio g ≡ Hd/h0,
h0 is the base wet coating thickness deposited onto the substrate.
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3. Solution method

3.1. Elliptic mesh generation

Because of the free surfaces, the flow domain is unknown a priori. The set of differential equations and
boundary conditions posed in the unknown physical domain (x, y) has to be transformed to an equivalent set
defined in a known reference domain fixed in time (ξ, η) (varying in the range −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1),
wherein a simple mesh tessellation is effected. This can be done with a mapping x = x(ξ) that connects the
two domains, as is shown in (Romero et al., 1994 and Romero et al., ).

The mesh generation scheme must efficiently track the interface, maintain accuracy, smoothness, less danger
of singularity and automatic local control of mesh properties throughout the entire domain. This is achieved
using a elliptic mesh generation technique, described in detail (de Santos, 1991 and Benjamin, 1991). The
inverse of the mapping is governed by a pair of elliptic differential equations

∇ · (D · ∇ξ) = 0, (14)

where ∇ ≡ ∂/∂x denotes differentiation in physical space, and D is the diffusivity-like adjustable tensor that
allow for local grid refinement on the interior of the physical domain.

The governing and mesh generation equations written in the physical domain has to be rewritten in the
reference domain. This procedure adds complexity.

Boundary conditions are needed before the second-order partial differential equation, Eq. (14), can be solved.
The solid walls and synthetic inlet and outlet boundary planes were specified as functions of the coordinates and
along them stretching functions were used to distribute the terminii of the coordinate curves selected to serve
as element sides. The free boundary − the gas-liquid interface or meniscus − is implicitly located by imposing
the kinematic condition, Eq. (6).

In transient problems the frame of reference lies across the space-time domain for which the physical grid
points are constantly updated in time, we must transform the time derivative at fixed Eulerian locations in
space to time derivatives of any time-dependent quantity ∂Φ/∂t at fixed iso-parametric coordinates, denoted
by

◦
Φ. The following transformation is employed

∂Φ
∂t

=
◦
Φ − ◦

x ·∇Φ, (15)

where,
◦
x is the mesh velocity (Christodoulou and Scriven, 1992). The time t is independent of either the original

or he mapped coordinate system.
With relation from Eq. (15), the momentum equation becomes

ρ
(◦
v +(v− ◦

x) · ∇v
)
−∇ ·T = 0, (16)

3.2. Reduction to ordinary algebraic equations by Galerkin finite element method with basis
functions

The two-dimensional transient simulation were carried out using our in-house finite element analysis code,
with the primitive variable (velocity-pressure) formulation and fully coupled solution methods -the position of
the interface and the flow solution are computed simultaneously-.

In the Galerkin’s method, the governing partial differential equations, Eqs. (1), (2) and (14), are transformed
into a discretized system of time-dependent ordinary differential equations multiplying by appropriate basis
functions, integrating over the entire computational domain, and applying the divergence theorem to yield the
weighted residual form.

Rm
i ≡

∫

Ω̄

{
ρ[
◦
v +(v− ◦

x) · ∇v]ψm
i +∇ψm

i ·T
}

J dΩ̄−
∫

Γ̄

ψm
i (n ·T)

dΓ
dΓ̄

dΓ̄ = 0; (17)

Rc
i ≡

∫

Ω̄

(∇ · v) ψc
i JdΩ̄ = 0; (18)

Rx
i ≡ −

∫

Ω̄

∇ψx
i ·D · ∇ξ J dΩ̄ +

∫

Γ̄

ψx
i (n ·D · ∇ξ)

dΓ
dΓ̄

dΓ̄ = 0; (19)

Rk
i ≡

∫

Γ̄

n · (v− ◦
x) ψk

i

dΓ
dΓ̄

dΓ̄ = 0; (20)
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Superscripts m, c, x, and k denotes momentum, continuity, mesh, and kinematic residuals; n is the outward unit
normal vector of the boundary Γ; and J = dΩ/dΩ̄ is the determinant of the mapping deformation gradient. This
system is solved simultaneously to calculate the velocities, pressure and grid location of each node. The Galerkin
weighted residuals are evaluated by nine-point Gaussian quadrature with three points in each computational
direction.

Each independent variable is approximated with a linear combination of a finite number of knows basis
functions

v =
M∑

j

ṽj(t) ϕv
j (ξ, η), p =

N∑

j

p̃j(t) ϕp
j (ξ, η), x =

M∑

j

x̃j(t) ϕx
j (ξ, η). (21)

Here, ṽj(t), p̃j(t), x̃j(t), are the basis functions coefficients, and represents the unknowns of the discretized
problem. The matrix vector of basis functions of the dependent variables is

u ≡ [ṽj(t), p̃j(t), x̃j(t)]T. (22)

An efficient mixed formulation of continuous basis functions are used to expand the independent variables.
Lagrangian biquadratic polynomials for velocity ϕv(ξ, η) and position ϕx(ξ, η), and linear discontinuous for
pressure ϕp(ξ, η) were used. The polynomial basis functions constructed on a standard square domain (ξ, η)
(where −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1) was mapped into each of the deformed quadrilateral elements in the flow
domain by the time-dependent isoparametric mapping.

In the weak (Galerkin) form equations, the weighting or test functions are the same of the basis functions,
i.e. ψm = ϕv, ψc = ϕp and ψx = ϕx.

By means of the Galerkin/FEM combined with the elliptic mesh generation system, equations are reduced
into a set of ordinary differential and algebraic equations for the coefficient of the basis functions of the form

R(u, u̇,q) = 0, (23)

where R is the set of weighted residual equations, u is a matrix vector of basis functions (unknowns) of the
dependent variables given by Eq. (22), u̇ is their time derivatives, and q the vector of input (physical and
discretization) parameters. The governing equations are solved in a couple manner, simultaneously everywhere.

3.3. Time integration

The aforementioned Galerkin weighted residuals form a set of nonlinear ordinary differential equations and
algebraic equations in time. The temporal discretization of this set of equations is done by a predictor corrector
algorithm. The predictor step consists of a forward Euler method and the corrector step consists of a first-order
fully implicit Euler method, which is unconditionally stable in the sense that the time step is not restricted
by any CFL-condition. The approximate form of the velocity time-derivatives in the momentum conservation
equation, Eq. (16), using backward finite difference is

◦
v≡ vn+1 − vn

tn+1 − tn
= f(vn+1, tn+1), (24)

where the index n + 1 and n indicates current and previous time instant respectively. The difference tn+1 − tn

defines the current time step ∆tn+1. A similar expression is used for the mesh velocity
◦
x.

3.4. Evaluation of the basis functions coefficients

The resulting set of nonlinear algebraic equations (in n+1) is solved simultaneously by the Newton’s method
with an initial estimate resulting from an explicit Euler step from the solution at the previous time. At each
time step solve

(
1

∆t
M + J

)
δu(k+1) = −R(u(k+1),uk), (25)

u(k+1) = uk + δu(k+1), (26)

Newton’s method linearize the equation set and adds the solution of the resulting linear system to the current
estimate in order to provide an updated estimate of the flow field. The iteration is repeated until convergence.
Here J ≡ ∂R/∂u is the Jacobian matrix which measure the sensitivity of the residuals to changes in the nodal
unknowns and M ≡ ∂R/∂u̇ is the mass matrix and measure the sensitivity of the residuals to changes in the
time derivatives of the nodal unknowns (liquid accelerations, velocities and nodal points). The integrals arising
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in the residuals and the Jacobian matrices used in Newton’s method are evaluated numerically using Gaussian
quadrature (Strang and Fix, 1973).

Because the finite element basis functions used are different from zero only over a very small portion of
the domain, the Jacobian matrix is sparse and was stored in compressed sparse formats. In each Newton
iteration, the linearized equation system was factorized into unit lower L and unit upper U triangular matrix
by a Gauss-elimination direct frontal solver (Hood, 1976 and Hood, 1977), as described by (Almeida, 1996).

In order that the Newton process converged within 6 to 8 iterations at each successive new set of operating
conditions, the initial estimates were generated by a pseudo-arc-length continuation method as described by
(Keller, 1977 and Bolstad and Keller, 1985). The tolerance on the L2-norm of the residual vector and on the
last Newton update of each declared solution was set to 10−6. However, close to turning points where the
Jacobian matrix becomes singular, convergence becomes difficult or impossible. Turning points are where a
solution branch turns back on itself. Other singular points are the bifurcation points and Hopf points.

3.5. Mesh selection and computer implementation

A mesh convergence analysis was done by comparing the downstream free surface configuration at capillary
number Ca = 0.2, Reynolds number Re = 1.33, dimensionless vacuum pressure V ac = 12, and gap-to-thickness
ratio Hd/t = 5.

The insensitivity of computed solutions to further mesh refinement has been demonstrated by systematically
increasing the level of refinement near the interface in the coating bead region for the uniform coating config-
uration, Fig. 2-a. Three different meshes was tested refined until the results changed by less than 1 %. In this
work the mesh selected contains 328 elements with 1,421 nodes.

(a) Uniform

(b) Short Lip Lenght

(c) Underbite

(d) Overbite

Downstream
free surface Film thickness, h

Substrate

Downstream
die lip

Figure 4: Close-up view of the tessellated domain for each slot coater configuration.

For each geometry explored (uniform, short lip length, underbite and overbite) the typical meshes used are
showed in Fig. 4. The total number of basis functions coefficients is 6,668. The resulting algorithm have been
programmed in FORTRAN and run on a single 2.4 GHz Intel(R) Pentium(R) IV processor. A typical transient
simulation of the slot coater requires roughly 50 minutes for 100 time steps, each Newton’s iteration takes
around 30 seconds.

4. Results and discussion

Limitations of this computational experiments include the inability to scan the enormous range parameter
space encompassed by the single slot coater process. The parameter space is a function of several variables
including Reynolds number, Stokes number, capillary number, gap-to-thickness ratio, vacuum level, die shape,
and more. Hopefully, the representative studies presented here will raise awareness for the need of more research
in the field of one coating analysis.

Solutions were computed at different capillary and Reynolds numbers, and several liquid flow rate, constant
gap-to-thickness ratio H0/t and vacuum level V ac.

Figure (5) displays contours of the transient streamfunction at three time instant t1 = 22∆t, t2 = 38∆t and
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Figure 5: Three time instant showing the flow field variation with time in a parallel coating gap corresponding
to the red curve of Fig. (9). The flow rate oscillates with amplitude A = 10 % and frequency f = 500 Hz.

t3 = 55∆t which correspond to a maximum (h1 = h0 + ∆h0), middle (h2 = h0) and minimum (h3 = h0 −∆h0)
film thickness respectively. Some fraction of the liquid moves into the upstream bead, whereas a remainder
flows into the downstream bead. The net flow into the upstream portion of the bead equals zero, the upstream
meniscus bounds the liquid and the flow turns 180o. The upstream meniscus meets the web at the dynamic
contact angle θdyn = 120o and intersects the upstream slot lip at the static contact angle θsca = 70o. Under
the downstream lip, where viscous and pressure forces balance each other, the flow is largely rectilinear until
the liquid squeezes under the downstream meniscus and the streamlines become curved and inertia plays a
greater role. The liquid accelerates until it reaches the web speed. Over roughly three gaps downweb from the
downstream lip edge, the liquid relaxes to a thin film that is essentially plug flow, viscous and inertial forces
diminish. The free surface curvature is highest close to the downstream lip edge, where the contact line is
pinned, and drops rapidly away and the free surface levels out. The concavity of the meniscus (from the gas
side) requires that the pressure be sub-ambient.
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Figure 6: Transient film thickness variation with amplitude A of the sinusoidal perturbation of the input flow
rate (q = q0 + Asin(f t)) in an uniform slot configuration.

The curvature of the downstream meniscus increase and the dynamic contact line moves towards the feed
slot diminishing the coating bead length and because the disturbance introduced into the prescribed flow rate is
a sinusoidal function, the coating film thickness and the dynamic contact line respond in a similar form. Fig. (6)
presents the transient flow rate prescribed at the inflow plane with amplitude A = 10% and frequency f = 100
Hz, and the transient coating film thickness measured at the outflow plane (see Fig. (3)). As observed, the
perturbation takes a time until produce a response in the output film thickness, this is the delay time (tdelay in
the figure) which is function of the operating parameters, liquid properties and perturbation.

The influence of the amplitude of the perturbation in the film thickness is explored in Figs. (7) and (8),
shows that the higher the liquid flow rate, the higher the response to ongoing disturbances of the flow rate, and
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Figure 7: Transient film thickness variation with amplitude A of the sinusoidal perturbation of the input flow
rate (q = q0 + Asin(f t)) in an uniform slot configuration.
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Figure 8: Variation of the final liquid layer thickness with the amplitude of the perturbation of the liquid flow
rate in the uniform slot coating.

as is displayed in Fig. (8) this growth is linear. This result agrees very well with the obtained by (Gates, 1999)
in his frequency response analysis of slot coating. The perturbations imposed by (Gates, 1999) had amplitude
of 1% and frequencies ranging from 1 to 2000 Hz.

Figures (9) and (10) plots the transient coating film thickness variation at frequencies ranging from 100 Hz
to 1000 Hz. The results shows that the higher the frequencies of the ongoing disturbances of the flow rate, the
lower the film thickness variation. This results are in accordance with the results obtained by (Gates, 1999).
Fig. (10) also shows higher the amplitude of the perturbation, the higher the variation of the film thickness.

The influence of the capillary number is plotted in Fig. (11), the coating film thickness varies in inverse
proportion to the capillary number. Figure (12) shows how the film thickness change as the coating gap
passes from the underbite to overbite configuration at constant capillary and Reynolds number. The underbite
configuration is when the upstream gap is narrower than the downstream gap. The overbite is when the
upstream gap is wider than the downstream gap.
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Figure 11: Influence of the capillary number (Ca) in the film thickness.
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Figure 12: Maximal film thickness variation at different coating gap and lip length configurations.
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